NSWEC-10

o
=
o
S
O
L
o
et
=
Q
(o

DEMTECHGROUP

DEMOCRACY, TECHNOLOGY & TRUST

Ribegade 19 st th
2100 Copenhagen
Denmark

CVR: 35527052

Review of the Revised iVote 2021 System

David Hook and Carsten Schirmann
July 2021

Final Report

Branch: master Commit: cbff0245cd06f7c0bf20a23d03313fe484e25e2d



NSWEC-10




NSWEC-10

Table of Contents

4

EXeCUtiVe SUMMAIY .....ccuiiiiiiiiiii s s s s s s s s s s e nas 1
Scope and Review MethodoIogy.......ccovrreiiririrararrrarar s rmr e s s s sasns s rasasasas 3
Functional MatChing ........coeuiiiriiiiiiii s e e 6
3.1 The Quality of the Documents Provided ...........cccooiiiiiiiiiiiiice e 6
3.2 Verifiability ANAIYSIS ... .uieiii 6
R0 2 B o o o] 1= /2 7
3.2.2 Explicit Erasure of VOIES ... ..o 11
3.2.3 Key Generation and RandomNess ..........c.oiuiiiiiiiiiiiii e 12
B.2.4 UNUSEA COOE .. .uieiiieii e e 13
3.2.5 Missing Contracts and INvariants .............coveieiiiiiiii e 14
3.2.6 PasSWOIAS ..... .o 14
3.2.7 Hardcoded PassWOrdS. ............couiuiiiiiiii e 15
3.2.8 Quality of the Specification ... 15
Static ANAlYSiS......cuieeieiiiiii e 17
4.1 Trusted BUIld .......oonie e 17
4.2  Analysis of SLOCCOUNt REPOI.....c.vuiriiiiii e 18
4.3 Analysis of Test Rail REPOrt..... ..ot 19
4.4 SpotBugs StatiC ANAIYSIS . ..uuieiii e 19

Appendix A: SLOCcoUNt REPOIt .......vuieiiuiiiiiiirirr s s e 23



NSWEC-10




NSWEC-10

1 Executive Summary

We have reviewed the version 1.8.5 (06/2021) of the iVote source code. Overall,
our analysis has shown that most of the code has not undergone major changes
since the release in 2019, the update to the mixing component being the most
notable exception. While this would suggest the risk of a major malfunction of
the iVote system during deployment is relatively low due to stability of the code
base, the recent changes to the configuration files and dependencies may have
introduced new risks that can, at this point in time, only be mitigated through
rigorous, systematic, and extensive testing.

Remaining Areas of Concern

1.

Remaining Known Vulnerabilities. We have carefully followed the ongoing
effort of the Vendor to reduce the number of known vulnerabilities of the
code base. The remaining vulnerabilities are carefully documented and ac-
companied by a rationale. Overall the rationales make sense, assuming the
Vendor assertions related to them can be accepted.

Trusted Build Issues. The final code drop appeared to have three forms,
what was given to us, what was provided to the Commission by the Vendor,
and what was described in the static code analysis documentation the Ven-
dor provided us with. With assistance from the iVote Team at the NSWEC,
we believe we have worked out that the codebase we were given was a
superset of what was deployed as it appears some duplicate and unused
packages are present in the trusted build source. If we continue to assume
this premise is correct and also ignore the version numbers and some dis-
crepancies in module naming for the static analysis report, the static analysis
report also appears to match up. As this is the case it seems likely but not
certain, that what we were presented with is the same as what NSWEC has
deployed, barring some last minute patches.

Test Quality. Despite several requests, the Vendor failed to provide anno-
tated coverage reports for system testing, and also details of any security or
"fuzz" testing. We have been provided with partial coverage summaries with
percentages, but these are not enough to allow for the recognition of dead
code in the system which would be a useful indicator of quality and risk in
the system. We say risk as occasionally otherwise unused code can feature
in attacks built around feeding unexpected input into a system. This risk is
usually checked for using what is commonly referred to as "fuzz" testing.



NSWEC-10

4.

Documentation Quality. The documentation of the iVote system is imprecise,
incomplete, and in many parts out of date.

Static Code Analysis. The Vendor provided us with a detailed SpotBugs
report of the final build. This report is noteworthy, because it consists of over
500 pages, listing common programming problems identified in the iVote
source code, many of which are considered harmful. While we regard it as
a positive that, over the course of the review, the Vendor appears to have
integrated the reporting into their development process, there are a number
of issues highlighted, in particular which may indicate concurrency problems,
that the report details.

Recommendations

1.

We strongly recommend the Commission should carefully check that they
are fully satisfied with the explanations provided and ask the Vendor for a
more details, if required. We say this as some explanations indicate the Ven-
dor is assuming other mitigations are in place. While this does not discount
the rationale offered, in the interests of safety and security, it is important that
Commission staff understand what the implications of any rationale may be.

. We strongly recommend the Commission review the test plans provided by

the Vendor and ensure those plus testing by the Commission ensure that
they take account of edge conditions, unexpected events, and how the sys-
tem behaves under high loads. This is a remote voting service and we are in
the middle of a pandemic - it is highly likely the system will see higher than
usual load. While some of the concurrency issues reported in SpotBugs are
likely to be false positives, load testing will also increase the likelihood of
finding any real concurrency issues.

. Ongoing, we strongly recommend the Commission should devise and imple-

ment a strategy to avoid maintenance problems such as the ones outlined
in this and previous reports. This would need to include, the local building of
the iVote system from Vendor sources to ensure accurate review is possible,
and to minimise any opportunities for supply-chain attacks on the system via
manipulation of dependencies or software. It should also include, at a min-
imum: the continued use of automated static code analysis, the automated
generation of annotated coverage reports for system tests, continuous mon-
itoring of third-party dependencies for CVEs and other security issues, and
finally, on going maintenance of documentation to reflect design and soft-
ware changes. Finally, there should be be an explicit commitment by the
Vendor to take action in regard to any of the aforementioned should an is-
sue be flagged, and that such checks and reports will be generated regularly,
even if the code is not under active development.



NSWEC-10

2 Scope and Review Methodology

This report is a review of the iVote version 1.8.5 (06/2021). It supersedes pre-
vious analysis which concerned iVote version 1.8 (03/2021). The source code
of iVote 1.8.5 was delivered in form of a 1.8GB compressed file entitled “nswec-
trusted-build.tar.gz”. The documentation provided by NSWEC and the Vendor
comprises several documents [1, 2, 3, 4, 5, 6, 7, 8,9, 10], of which we rely heav-
ily on [8] that contains the description of the voting protocol. We use the other
documents only as reference. The documentation was not updated from iVote
1.8 to 1.8.5, but the Vendor provided an additional 500 page document [17]
that summarizes all remaining software deficiencies produced by the Vendor’s
software quality assurance tools, which we also review in this report. Two other
reports [15, 16] were shared by the Vendor in response to earlier versions of this
draft. In addition, we made use of four relevant scientific papers [11, 12, 13, 14].

[1] NSW Electoral Commission. iVote Project — Security Threat Model. Inter-
nal Report, July 2018.

[2] NSW Electoral Commission. iVote Voting System, Election configuration
file specification . Internal release, April 16 2018. Version 0.1.

[3] NSW Electoral Commission. iVote Voting System, iVote Voting System —
Cryptolib Architecture. Internal release, April 30 2018. Version 1.0.

[4] NSW Electoral Commission. iVote Voting System, iVote Voting System —
Secure Logger Architecture. Internal release, April 30 2018. Version 1.0.

[5] NSW Electoral Commission. iVote Voting System, iVote Voting System —
Solution Architecture. Internal release, April 30 2018. Version 1.0.

[6] NSW Electoral Commission. iVote Voting System, Specification of Scytl
Online Voting. Internal release, April 30 2018. Version 1.0.

[7] NSW Electoral Commission. Security controls and risk reduction. Internal
Report, January 2018.

[8] NSW Electoral Commission. iVote Voting System, Voting Protocol Descrip-
tion. Version 1.2, February 2020.

[9] NSW Electoral Commission. iVote Voting System, Interface specifications.
Internal release, April 10 2021. Version 1.0.



NSWEC-10

[10] Scytl R+S Department. Scytl PRNG, May 5 2021. V 2.0.

[11] Rolf Haenni. Swiss Post Public Intrusion Test - Generating Random Group
Elements (Best Practice). Technical report, Bern University of Applied Sci-
ences, March 12 2019.

[12] Rolf Haenni. Swiss Post Public Intrusion Test - Undetectable Attack Against
Vote Integrity and Secrecy. Technical report, Bern University of Applied
Sciences, March 12 2019.

[13] J. Alex Halderman and Vanessa Teague. The New South Wales iVote
System: Security Failures and Verification Flaws in a Live Online Election.
Washington, D.C., August 2015. USENIX Association.

[14] Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. Ceci n’est pas
une preuve. The use of trapdoor commitments in Bayer-Groth proofs and
the implications for the verifiabilty of the Scytl-Swiss Post Internet voting
system. Technical report, Open Privacy Research Society, UCLouvain,
The University of Melbourne, March 12 2019.

[15] Scytl. Naked SQL and list of CVE libraries under analysis. Internal note,
July 17, 2021.

[16] Scytl. Scytl's answers to the auditor’s questions/recommendations. Internal
note, July 17, 2021.

[17] Spotbugs. Spotbugs report, based on data provided by Scytl. HTML for-
matted XML data, July 2021.

Because of the sheer size of the source code, we carefully scoped the functional
matching task: In scope were all modules that touch, store, cleanse, mix, and
decrypt the vote, including the govlab modules and the JavaScript client, but
excluding the secure logging system [4]. Outside the scope were, in general,
all other modules except for the functionality necessary to follow the vote. l.e.
we do not review the cryptolib [3] exhaustively, but only parts, for example to
create and verify Schnorr proofs, encrypt and decrypt votes, and create and
verify digital signatures. Requirements for establishing authenticated channels,
for example using certificate chains, are not described in the specification [8],
and are therefore outside the scope of this review.

Furthermore, outside the scope of this report were are all parts of the implemen-
tation for which no design documents or other documents were provided. This
includes some of the standard modules of the Vendor voting solution, but also



NSWEC-10

configuration functionality related to iVote deployment and third-party libraries,
such as inVote, RabbitMQ, Spring, and Hibernate.

Due to the lack of good code scanning tools for JavaScript, no automated code
scanning analysis for JavaScript APIs was conducted.

Some information which affects the ability to properly assess the quality of the
software has been unavailable. The Vendor has not provided meaningful cover-
age information, despite request. The absence of information contributes to a
lack of transparency that makes it impossible to asses the overall quality of the
software.



NSWEC-10

3.1

3.2

Functional Matching

The Quality of the Documents Provided

We expected that the files included in the source code drop would give us suf-
ficient information (1) to serve as design documents and (2) to provide us with
enough information on how the different software modules interact. Unfortu-
nately, this was not the case. When we reviewed the Interface specification [9],
we found it to be under-specified and incorrect. For example, Figure 1 in [9]
gives a good overview over eleven modules that define iVote. The document
explains some of the interfaces, but not all. In the figure, interfaces for the voter
portal and the verification app are depicted, but they are not explained in the
body of the document. Some of the arrows in the figure carry different iden-
tifications than those used in the body of the document and some were not
explained at all. In addition, there is no direct matching between Figure 1 and
the implementation.

For some modules, no documentation was provided, for example the inVote
system, an integrated solution developed and provided by the Vendor for or-
ganization public and private elections. When asking the Vendor for additional
information, we were informed that it was unavailable. From the logs supplied
with the source code, we learned that inVote’s development originated around
2006, but modules for iVote were only added in November 2019.

Recommendation: The Vendor should supply additional documentation for in-
Vote.

Verifiability Analysis

In this analysis, we traced the the vote throughout the source code, starting with
how an empty virtual ballot paper (VBP) is generated, supplied to the authen-
ticated user when requested through the JavaScript client, how it is completed
by the voter, how evidence in the form of a Schnorr proof is generated, the sig-
nature are generated, the vote is returned to the castvote module in the inVote
system, how the the voter requests the vote for verification, how the ballot is
then forwarded to the cleanser, the mixer, and eventually decrypted. Overall, we
found, that the iVote system implements the specification faithfully. However, we



NSWEC-10

have identified several observations that we believe can help the NSWEC and
the Vendor to improve the implementation.

3.2.1 Complexity

The complexity of the source code is owed in part to an apparent issue with the
build and dependency management system at the Vendor, and also in part be-
cause iVote is built on top of several different frameworks that in turn depend on
several third-party libraries. The Spring framework provides all functionality with
respect to secure message passing, the inVote framework the functionality for
implementing a particular voting protocol. We found that compared to the prior
version, the complexity of the iVote system was greatly improved. The 1.8.5
build of iVote shows substantial progress in reducing complexity, previously we
were given 105 modules, this has now been reduced to 72. But there is still
duplication.

nsw-ivapi.min.js:

This file appears in the nsw_voter_portal_0_15_26. It is apparently used in the
web client for voters and is just over 126,000 lines long. Unfortunately we were
not able to confirm how it was constructed as, while the Vendor did provide
some instructions, the instructions failed as the building process appears to rely
on access to internal Vendor systems.

Our concern here is two fold, we are not entirely sure what has gone into the
file’s construction and the file does appear to contain some duplication, for ex-
ample, the Fortuna random number generator appears at least twice, possibly
more times. It is difficult to review JavaScript at the best of times, but the dupli-
cation makes it impossible to be sure what code will be executed.

While we would expect the file to be obfuscated and compressed for download
to clients, it is important to keep in mind those steps are reversible and the code
is essentially published to the general public, including those who might not be
well intentioned. The code provides an access path into the inVote system, so
it is important that the client side API should be reviewable.

Recommendation: The build of the nsw-ivapi.min.js should be simplified to
make it possible for reviewers to generate a file without duplication.



NSWEC-10

The nswec_govlab module:

This module contains the source code of the inVote framework that is a central
part of the iVote system.

nswec_govlab_1_3_0-RC2
nswec_govlab_1_3_1

We observe that two Java files, and multiple POM files are different. A POM file
captures the dependencies of modules on other modules and/or libraries. Two
files are updated,

NSWImportVotersAndVotes. java
CsvManagerJdbcDao. java

and the differences in both cases appear to be meaningful. Which govlab mod-
ule is in use?

The cryptolib module:

The library that implements the basic cryptographic operations, cryptolib,

cryptolib_2_4_1
cryptolib_ 2 7_2

show substantial differences. The only module depending on 2.7.2 is the se-
cure logger. Assuming that 2.7.2 is more recent than 2.4.1, we wonder why
doesn’t the entire iVote system use the latest release? Is the 2.4.1 release still
maintained?

The jbasis_cryptolib module:

Also the jbasis_crypto library appears at different versions and levels of maturity.



NSWEC-10

jbasis_crypto_4_1_0
jbasis_crypto_4_2_1
jbasis_crypto_4_2 1_3
jbasis_crypto_4.3.1

In this case jbasis_crypto_4 1_0 and jbasis_crypto_4 2 1 appear largely the
same, while a diff shows substantial differences they appear to be due to a
change of formatting. jbasis_crypto_4 2 1_3 has a couple of differences from
jbasis_crypto_4 2 1 and also includes git conflict messages in the source code
indicating a failed merge. The differences between 4_2 1 and4_2_1_3 appear
to be in the XML parsing. jbasis_crypto_4.3.1 appears to add some use of
generics with further formatting changes and a change to the method for out-
putting certificate PEM files but appears to be missing the XML changes from
4 2 1_3. Each module appears to be used at least once. In post election main-
tenance the modules need to properly reviewed and the divergence that seems
to have happened in4_2_1_3 resolved.

The p7_cms module:

These modules are duplicates that appear at different version numbers and
levels of maturity.

p7_cms_1_2_0
p7_cms_1_5_1
1_1

p7_cms_1_5_

1.2.0 is substantially different from 1.5.1, 1.5.1.1 uses the latest version of the
Bouncy Castle crypto library. It is also concerning the 1.5.1 is still in use with in-
vote_plugin_counting_tally_1_4_3_1, invote_plugin_counting_mixing_1_4_2_1
and invote_plugin_counting_cleansing_1_4_2 1 as it overrides the choice of
Bouncy Castle to use bcmail 1.55 which is well out of date. This last issue is
also concerning as the resolution of the transitive dependency on bcmail 1.55
during building may override the parent dependency on BC 1.68 resulting in the
use of bcprov 1.55 which is also subject to a number of CVEs. 1.2.0 is well out
of date and should not be present at all.



NSWEC-10 10

The scytl_math module:

scytl_math_1_0_1
scytl_math_1_1_0

1.1.0 adds two new methods to Biglntegers class. We could not identify any
other meaningful changes, which seems to suggest that 1.0.1 is unnecessary.
Why 1.0.1 is present?

The nsw_commons module:

nsw_commons_1lib 1 7 2

nsw_commons_1lib 1 7 4

Differences appear to be related to the POM files. The Java source files are
different only in the context of the copyright notice which has been updated
from 2020 to 2021.

The maven dependency and generic modules:

maven_dependencies_1_2_
maven_dependencies.2.1.
maven_dependencies.2.2.

= = O O

maven_dependencies.2.2.

maven generlc CODf

maven_generic_conf_

maven_generic_conf_

l\)O@U‘I»—B

1_5_
1_5_
maven_generic_conf_1_5_
2_0_
2_0_

maven_generic_conf_

Version 2.1.0 does not appear to be used anywhere, but is included in the
trusted build. maven-dependencies 2.2.1.1 appears to be widely used. Re-
lated to the maven dependencies, mixing_1_0_0_1 refers to maven depen-
dency 1.2.0 - while this should be a cause for concern it appears the POM file



NSWEC-10 11

in mixing_1_0_0_1 overrides all the imports so the maven-dependencies
file is actually ignored.

From a software engineering point of view, even the remaining complexity should
be considered harmful. It provides a soft target to criticize the iVote system on
and depending on the criticisms made could be very difficult to defend against.

Recommendation: The source code should be further simplified.
3.2.2 Explicit Erasure of Votes

We identified a piece of code, which we classify as dangerous: (class Autho-
rizedElectionVotersDaolmpl, line 29 ff)

public void deauthorizeAllElectionEventMinusElection (final Voter

voter, final Election election) {

StringBuilder sgl = new StringBuilder();

sgl.append("delete from authorized_election_voters where
voter_id = :voter ")
.append (" and election_id <> :election ") .append/(
" and election_id in (select id from elections where

election_event_id = :electionEvent) ");

getSession () .createSQLQuery(sgl.toString()) .setString (VOTER_PARAM,
voter.getId())
.setString (ELECTION_PARAM, election.getId())
.setString (ELECTION_EVENT_PARAM,
election.getElectionEvent () .getId()) .executeUpdate () ;

First and foremost, this call is a direct SQL call, which is executed within a
method that is under the Spring framework’s control. It is not clear, how trans-
action management is handled. In general, when dealing with concurrency in
programming, race conditions can have awful side effects, for example, the
Spring framework may want to roll back a transaction, but because the SQL
was executed this way it cannot be or may not be correct. The code assumes
that someone else has already created a transaction. The consequence is an
inconsistent database.

Second, in terms of verifiability such implementation should be avoided. Retroac-
tively, there is no easy way to explain if a vote was deleted or not. It could be
the case that there is sufficient evidence stored in the SQL server’s log file, but
this information is typically not considered verifiable.



NSWEC-10

12

Third, this functionality can be easily misused by someone with access to the
server iVote system, and executed, for example, after the deadline for vote ver-
ification expired. Executing similar functionality, for example compiled into a
separate module, would allow the attacker to remove votes selectively from the
database to sway a tight election.

Fourth, getSession() returns the current session on the thread if it exists. It
may actually return null if a session is not established, in which case the SQL
command will fail. Another potential issue, assuming this code is actually under
a transaction, is if the current transaction in the session which is being borrowed
is rolled-back. If this happens it will also roll-back the delete which will again
cause consistency problems. It is difficult for us to assess how serious this
problem is as substantial analysis work would be required to identify both the
possible transactions in the system and the dependent classes and operations
making up those transactions. There may be no risk here, we only flag this as a
potential issue.

We counted several similar occurrences of naked SQL in the following files that
delete information from SQL-databases using the “DELETE FROM” or “SE-
LECT FROM” SQL-syntax. It seems that several cases may be necessary to
provide the necessary infrastructure for the Spring framework to operate prop-
erly, but in all other cases the naked SQL code seems to be doing real deletes.
The latter are of concern.

Recommendation: The Vendor has responded [15] that all naked SQL calls
can be regarded as safe or as dead code. If the code is dead code it should
be eliminated by the Vendor in future. For future review, where the code is
not dead code, the dependent classes making up each transaction should be
documented allowing a fuller analysis of the approach used.

3.2.3 Key Generation and Randomness

Key generation in the minified JavaScript, nsw-ivapi.min.js, appears to be rely-
ing on a Fortuna implementation for providing the underlying randomness for
keys. The JavaScript modules supporting this are 3rd party ones, but do come
from recognised implementations of the algorithms they purport to represent.
The Vendor has provided some quality analysis and documentation concerning
entropy collection [10] however it does appear to be for an earlier version. A
look at the code in the JavaScript reveals that the entropy collection is based on
code that pre-dates the previous version of iVote so there is some confidence
the analysis presented in the out-of-date document is as relevant as the Vendor
claims and there is some evidence in the JavaScript that it is been applied.



NSWEC-10

13

We say some evidence as the JavaScript is unstructured, contains repeated
code, and is over 120000 lines. Ideally there would be no repetition and it would
be possible to properly examine the components making up the script. We did
request assistance in this matter from the Vendor and we were recently provided
with some instructions as to how to do this, but unfortunately it was not realised
in time that the scripts backing those instructions relied on access to internal
Vendor repositories and they failed.

Recommendation: In future, it must be possible to build the minified JavaScript
as part of the review process. The Vendor should investigate the causes of
duplication and eliminate them where possible.

3.2.4 Unused Code

We found unused and potentially harmful code all over the source code of the
iVote system.

In com.scytl.invote.plugin.counting.mixing.basic, line 29ff., which is a highly non-
verifiable mix of the ballotbox. Although this code most likely will never be exe-
cuted when running iVote in production environment, its mere presence is wor-
risome. This code was highlighted in our draft commentary on 1.8, it is still
present in 1.8.5.

public MixingBasicOutput execute (MixingBasicInput
input) {
List<byte[]> block = input.getMixingBlock () ;
Random random = input.getRandom() ;
Collections.shuffle(block, random);
Collections.shuffle(block, random);
return new MixingBasicOutput (block);

And there are other places like this. For example, the iVote source code defines
two kinds of functionalities, one is called “homomorphic” and the other “verifi-
ablemixing”. We do not believe that the modules for “homomorphic” are used in
iVote, however, they are still there.

In SecureMessageStoreService.java, line 55, the variable

private boolean onlyCanVoteOneElectionIntoElectionEvent =
false;

is hardcoded, so why is it there at all?



NSWEC-10

Recommendation: The source code must be refactored and all unused mod-
ules and functionality removed. Any production build should only be based on
the cleaned code.

3.2.5 Missing Contracts and Invariants

Related to this, we observe that many modules in the iVote source code do not
provide comments about what they implement, and if they do, they don’t do it
in a structured way. This absence adds to the complexity of the source code,
which becomes very unwieldy for a third party to review and analyze. This is
clearly not good practice, and definitely not state of the art. At the very least,
methods and functions should provide contracts' that define clearly what are
the input arguments to a function, which invariants have to hold, for example,
n > 0 or k is a valid key, what are the output arguments, and what are the
relations between input and output arguments. Such contracts allow a reviewer
to check the correctness of and implementation of a method and its call sites,
and allow the programmer to program better code. Contracts are state of the
art, and they greatly improve code quality.

Without contracts, it is impossible to comment on the quality of the code for
many methods. For example, at several places in the code, where html and xml
information is prepared (ReceiptMessageService.java, line 371f.), it is not clear
if the inputs are properly sanitized.

Recommendation: The Vendor should add contracts to all methods that define
the iVote system.

3.2.6 Passwords

The method loginAdvanced in ivapi.js, line 344ff. does require that username(ivote
number), [password], and pin, are passed in transformed form. Passwords are
not transformed, since TransformAuthentication inherits its methods from the
NoTransformAuthentication, which means that in iVote, the argument password
will always be set to "password". It appears that the Vendor has used their
standard modules, and customized some of them to use pin as a third argu-
ment, leaving the password argument unused. So far so good. The problem,
however, is that other standard modules might not be modified for the use in iV-
ote. After all, the size of the source code and the many unused modules present
in the source code are a strong indication that this might be the case. There is
a concern that other parts of the unused functionality may be activated using

'Bertrand Meyer, Applying “Design by Contract”, IEEE Computer, October 1992.



NSWEC-10 15

iVote-number and password "password" alone (without the pin), which would
allow an attacker to gain access and cause havoc.

Following up on this observation is outside the scope of this review. However, if
this suspicion proves true then iVote is vulnerable to outside attack. It is possible
that there is no issue here, however, while this could be regarded as specula-
tion, faced with a situation where things could be "okay" or "not okay", we feel
obliged to flag the issue for the Vendor to respond to. The uncertainty around
this issue would be greatly reduced, and possibly eliminated, if all unnecessary
functionality was removed from the iVote source code.

Recommendation: All unnecessary functionality must be removed from the
source code.

3.2.7 Hardcoded Passwords

We have identified a place in iVote’s configuration file, which looks like hard-
coded passwords. It is unclear, if these are the passwords are used in the pro-
duction system. We flag this for further investigation. The files are govlab_1_3_1/rest-
portal/src/main/config/env.properties, line 35ff. and govlab_1_3 2-RC2/rest-portal/
src/main/config/env.properties, line 35ff. Redacted examples are:

auth_server_password=|lIEGzGzGNEEGEGEEGEEE
message_server_password=/lEGGlGzGzG
portal_secure_log_sign_password=|lGzGzGEEEEEEEEEEEEEE
portal_secure_log_cipher_password=_
gdpr_key_store_password={GzGNEGGEG
gdpr_hmac_key_password={GzGEGGEGEGEGEGEEEEE
gdpr_hmac_alias={ Gz
gdpr_aes_key_password={GzGGEGEGEGEGEGEGEGEGEGEGEGEN
gdpr_aes_alias=|EGzGGEGEEEE

If these passwords are not used, then they should be removed from the code.
If they are used, they should also be removed from the source code and stored
elsewhere in a secure file.

Recommendation: The hardcoded passwords should be removed from the
source code.

3.2.8 Quality of the Specification



NSWEC-10

16

Although the specification describes the steps to understand the cryptographic
protocol implemented in the iVote system, it is also extremely unspecific when
it comes to details, including ballot structure, validity checking, security policies,
database use, etc. This generality gives the Vendor considerable freedom in
implementing and reusing existing functionality. This lack of specificity may well
have contributed to the issues apparent with bloat in the implementation that is
under review. We demonstrate this using a few examples.

. To get a better feel of what is missing, ivapi.js, line 865, for example, de-

scribes functionality of downloading additional content, getAdditionalimage,
getAudio, validateBallot, but this content is not described in the specifica-
tion [8].

In AnswerEncoderVM.js, line 53, where ballot preferences are being re-
ordered. These kind of operations are not captured in the specification, but
should be.

In the specification it is not mentioned that it is checked that prior to decryp-
tion that the randomnessID matches as well. In fact, the specification does
not even mention the existence of a field randomnessld. Of course one can
argue that if the randomness doesn’t match, the verification will fail anyway,
however, this is an indication that the specification should be refined.

. The implementation generates several files during cleansing, including a

DistrictsOutpultfile, a ManifestFile, a ElectionEventPublishFile, and Auditable
File. None of these files are described in the specification. This indicates
that there is a difference between implementation and specification.

Recommendation: In future, NSWEC should consider creating in-house ca-
pacity for refining specifications into proper design documents.



NSWEC-10

17

4.1

Static Analysis

Trusted Build

We observe that the production version of the iVote system was delivered to
NSWEC two weeks before a usable “trusted build” script was completed by the
Vendor that we could use to compile the iVote source code on our own ma-
chines. This implies that the Vendor’s build process relies very much on their
own development environment and cannot easily be exported to third parties.
But this also means that there is no guarantee that the source code and libraries
under review are really the source code and libraries used to build the produc-
tion system, and that they are complete. For example, the module invote-audit-
tool-invote-audit-tool-1.4.1 was not included in the original drop, but shared with
us later.

In our assessment, if things remain as they are, NSWEC will not have access
to the source code that was used to build the iVote system, nor can obtain a
copy from the Vendor and convince others that this is the correct version. We
consider this inherently problematic and a unnecessary security risk and flag it
as an issue.

The separation of the software distribution process and the creation of the
trusted build reduces confidence in our ability as reviewers to determine whether
what we are looking at is actually what has been delivered. This confidence is
further eroded by the continuing presence of duplication, particularly in areas of
the code that are security relevant and admissions by the Vendor that construct-
ing the trusted build is problematic. In some cases duplicated libraries appear to
have meaningful differences which would suggest bug fixing and that the older
version is unpatched. It is impossible for us to determine whether an out-of-date
version of a Vendor library has been deployed to part of the delivered system
where the lack of a patch will be meaningful and result in a critical failure.

The separation has also serious security implications: A supply-chain attack
on the Vendor or a Maven repository provider would allow a stealthy adversary
to attack the binary distribution of iVote without the Vendor, the reviewers, or
the NSWEC ever knowing about it before it is too late. In such a hypothetical
supply-chain attack, the adversary leverages previously obtained access to the
vendors’ computer systems to augment the build process of iVote unnoticed



NSWEC-10

18

4.2

by adding triggers or malware, such as backdoors, ransomware, or other dan-
gerous software into the compiled system. This kind of attack is not explicitly
considered in the materials under review [1, 7], but clearly possible considering
the Solarwinds attack in late 2020. It could be easily mitigated by ensuring the
NSWEC is given the original source and artifacts to build the system and then
passes the actual source and artifacts to reviewers for review.

Recommendation: NSWEC should have access to the original source, for ex-

ample, a git repository, and should be able to build the production iVote system
from scratch.

Analysis of SLOCcount Report

SLOCcount is a simple tool for doing analysis and cost estimation of the effective
lines of code in software. We compare the SLOCcount report is much improved,
because of the removal of duplicate files and unnecessary modules. For a full

report, consult Appendix A.

Current (iVote 1.8.5):

javascript: 593941 (45.44%)

Jjava: 427715 (32.73%)
xml : 227204 (17.38%)
ansic: 31923 (2.44%)
python: 19782 (1.51%)
cpp: 4907 (0.38%)
sh: 946 (0.07%)
lisp: 264 (0.02%)
cs: 211 (0.02%)
perl: 99 (0.01%)

Previous (iVote 1.8):

javascript: 1530825 (64.10%)

java: 520115 (21.78%)
xml : 261152 (10.94%)
ansic: 33194 (1.39%)
python: 30699 (1.29%)
cpp: 8994 (0.38%)

sh: 2203 (0.09%)



NSWEC-10 19

cs: 420 (0.02%)
perl: 295 (0.01%)
lisp: 264 (0.01%)

There is still some obvious duplication. A look at the full SLOCcount report
shows (see Appendix A):

online_voting_logging_1.3.6.1 (none)
rabbitmg spring _webapp_2_0_0 (none)

The reason for the zero line count is that the contents of online_voting_logging_1.3.6.1
is identical to the contents of logging_1_3_6_1 and rabbitmq_spring_webapp_2 0_0
is identical to rabbitmqg_producer_2_0_0. It is not clear why the duplicate pack-
ages would be present.

4.3 Analysis of Test Rail Report

Test Rail report appears to be consistent with code updates. The last meaningful
code update appears to have been on June 18, 2021 in nswec_govlab_1_3 1.

4.4 SpotBugs Static Analysis

The Vendor provided a SpotBugs static analysis report, which we have made
available in a separate document [17] due to its size (approx. 512 pages). The
SpotBugs analysis still indicates some code quality issues, some of which may
be important.

What follows is a sample of what was found.

RestoreElectionEventTaskParams

There are 2 classes with this name, the one reported is under: nswec_govlab_1_3_1/rest-
services-bo

The error reported is PREDICTABLE RANDOM, the code lines of code con-
cerned are:

this.fileElectionEventName = "ELECTION_EVENT_RESTORE"
.concat (String.valueOf ((int) (Math.floor ((Math.random() * 10000000) + 1))))



NSWEC-10

20

.concat (".xml");

this.fileCandidateListName = "CANDIDATE_LIST_RESTORE"
.concat (String.valueOf ((int) (Math.floor ((Math.random() * 10000000) + 1))))
.concat (".xml");

It appears that the code is trying to generate some random names and avoid
a possible clash by using the java.util. Random. We are assuming the need for
randomness is because the class is being used in a multi-threaded fashion and
that a clash between two uses may cause failure or invalid behaviour.

We would point out that the above could be done safely using a counter based
on classes from the Java concurrency API and that as Random is based on a
48 bit progression, the chance of a clash is far higher than should be acceptable
in an application being used to run an election. We are unable to ascertain what
the implications of a clash would really be.

ApplicationinfoVO

This class appears under nswec_govlab_1_3 1/rest-services-bo/.

The error report is EL_EXPOSE_REP. The code concerned is:

/ **
* @return Returns the currentTime.
*/

public Date getCurrentTime () {
return currentTime;

/ **
* (@param currentTime The currentTime to set.
*/

public void setCurrentTime (final Date currentTime) {
this.currentTime = currentTime;

In Java, java.util.Date is actually a mutable object. In both cases the caller to the
above methods could change the value in current time, consequently changing
what is in ApplicationInfoVO. It is unclear what the implications of an error like
this would be, but it could be easily avoided by creating a new Date object to
hold the value on either the set or the get method.



NSWEC-10

SuspendedElection

This class appears under nswec_govlab_1_3_1/repositories-bo/.

The error reportis EQ_CHECK_FOR_OPERAND_NOT_COMPATIBLE_WITH_THIS.

The code concerned is:

/ * %
* @see java.lang.Object#equals (java.lang.Object)
*/

@Override

public boolean equals(final Object obij) {
boolean equals = false;

if (obj instanceof SimpleElection) {

equals = getId().equals(((SimpleElection) obj).getId());

} else {
super.equals (obj) ;

return equals;

SimpleElection is the wrong type and this code cannot possibly be correct. Use
of super.equals() defaults to object identity, or at least it would if the return value
from super.equals() was not ignored. The code will actually fail to return true if
an object is compared with itself. It is not clear what the implications of this error
are.

RenewAuthTokenController

This class appears under nswec_govlab_1_3 1/repositories-bo/.

The error report is SERVLET_PARAMETER. The code concerned is:

ElectoralScope es = ElectoralScopeBuilder.getInstance ()
.withInstitutionId(request.getParameter (MessageConstants.INSTITUTION_ID))

.withElectionEventId (request.getParameter (MessageConstants.ELECTION_EVENT_ID))

.withElectionId(request.getParameter (MessageConstants.ELECTION_ID) ) .build();



NSWEC-10

22

The issue reported here is the servlet parameters are passed straight in without
validation. It is not clear the parameters are validated else which is a particular
concern as the ElectoralScope object is referenced in a number of the Dao
objects.

As already mentioned, this is only a sample, of the information contained within
the SpotBugs report. With the exception of the SuspendedElection bug, all the
above reports appear multiple times in the 512 pages making up the current
SpotBugs report [17] based on the XML provided by the Vendor on the 4th June
2021 and we have confirmed the issues still appear to be present. Of par-
ticular concern are reports related to possible concurrency issues and servlet
parameter validation. Tweaking servlet parameters to cause chaos is a common
approach employed by people looking to attack a system.

Recommendation: We would recommend the NSWEC review the SpotBugs
report with the Vendor, paying particular attention to concurrency issues and
invalidated servlet parameters, and patch where possible. Testing should also
be done to with faulty, invalid, and out of range servlet parameters to ensure the
system deals with them gracefully.



NSWEC-10

23

Appendix A: SLOCcount Report

SLOC Directory SLOC-by-Language (Sorted)

304585

180654
174095
104461
78878
66573
64115
22735
22734
22730
19354
19135
19040
16370
15425
15193
15009
14656
9884
9048
7734
7526
6000
5994
5209
5088
5037
4796
4442
4166
3379
3200
3199
2844
2797
2777
2667
2587
2504
2389
2357
2034
2019
1598
1527
1301
1130
1111
1075
1020
984
xm1=984
976
976
976
954
943
931
890

lib_parent_grunt_0_5_1 javascript=247635,ansic=29665, python=19266,
cpp=4907,xm1=2132, sh=505, lisp=264, cs=211

nswec_govlab_1_3_0-RC2 java=122132,xml=57755, javascript=753, sh=14

nsw_customization_1_4_4 javascript=173949,sh=146

nswec_olv_credential_manager_1_7_8 xml=96592, java=7869

nsw_voter_portal_0_15_26 javascript=78878

cryptolib_2_4_1 java=56235, javascript=6002, xm1=4336

cryptolib_2_7_2 java=55158, javascript=6133, xm1=2824

nsw_commons_1lib_1_7_2 java=19445, xm1=3290

nsw_commons_1lib_1_7_4 java=19445, xm1=3289

nswec_govlab_new_backoffice_frontend_1_2_1 javascript=22662,xml=68

nsw_converter_1_7_3 xml=15047, java=4307

invote_receipt_admin_1_2_1 java=15756, xm1=3379

js_forge_0_6_45_4 javascript=18919,xml=121

invote_domain_model_1.4.2.1 java=15471, xml=899

lge_converter_1_0_3 xml=9394, java=6031

nswec_govlab_javascript_client_api_1_3_6 javascript=14771,xml=422

mixing_1_0_0_1 java=14482,xml=527

js_forge_0_6_8 javascript=14569,xm1=87

crypto_resources_maven_plugin_1_1 0_1 java=8786, xm1l=1098

invote_plugin_counting_tally_1_4 3 1 java=8462,xml=586

secure_logger_5_4_0 java=7182,xml=552

maven_generic_conf_1_5_4 java=5815,xm1=1711

nsw_results_1 7_5 java=5596,xml=404

jbasis_crypto_4.3.1 java=4766,xml=1175, javascript=53

invote_plugin_counting_cleansing_1 4 2 1 java=4509,xm1=700

nswec_govlab_receipts_frontend_1 2 0 javascript=5020,xml=68

invote-protocol-common-pom-1.8.3.1 java=4655,xm1=382

invote_plugin_import_election_event_1_4_3_1 java=4318,xml=478

certificate_validation_1_5_3 java=2838,xml=1604

invote_plugin_castvote_1_4_3_1 java=3634,xml=532

nswec_event_consumers_1_7_3 java=2145,xml1=1234

invote_crypto_base_1_10_0_1 java=2994, xm1=206

nswec_govlab_1_3_1 xml=2435, java=764

jbasis_crypto_4_1 0 java=2741,xml=103

invote_plugin_counting_decrypt_1 4 2 1 java=2420,xml=377

invote_plugin_api_1 4 _3_1 java=2655,xml=122

jwt_springsecurity_1 2 5 1 java=2353,xml=314

shares_3_2 0 java=2506, xm1=81

nswec_credential_manager_fe_1_0_9 javascript=2434,xml1=70

invote_plugin_counting_mixing_1_4 2 1 java=2062,xml=327

scytl _math_1 0_1 java=1178,ansic=621, xm1=558

nswec_crypto_resources_generator_1_8_1 xml=2034

rabbitmq_producer_2_0_0 java=1658, xml=361

scytl _gmp_6_1 1 ansic=1564,xml1=34

nswec_receipts_portal_frontend_portal_1_7_1 javascript=1463,xml=64

detectjvm_3_0_19 javascript=596,xml=479, java=226

jbasis_crypto_4_2 1 3 java=1015,xml=115

logging_1_3_6_1 java=822,xml=289

nsw_splunk_1_7_3 xml=1075

lib_jwt_1 0 2 1 java=912,xm1=108

invote_plugin_security_model_config_castvote_verifiable-mixing-1_1 2 1

maven_dependencies.2.1.0 xml=976
maven_dependencies.2.2.1 xml=976
maven_dependencies.2.2.1.1 xml=976
p7_cms_1 5 1 java=776,xml=178
filerule_maven_plugin_2_0 java=786,xml=157
p7_cms_1 2 0 java=726, xm1=205
jbasis_crypto_4_2_ 1 java=787,xml=103



NSWEC-10

24

772 scytl_math_1_1_0 java=506,xm1=193,ansic=73

700 nswec_ansibles_1 8 _7_1 python=516,xm1=184

555 aux_nswec_rabbitmg_spring_webapp_1_0_0 sh=281,xml=149, per1=99, java=26
522 property2json_maven_plugin_1_5_0 java=477,xml=45
516 maven_generic_conf_1_5_6 xml=516

504 maven_generic_conf_1_5_5 xml=504

409 invote_plugin_manager_1_4_1_1 java=288,xml=121
296 maven_generic_conf_2_0_2 xml=296

279 maven_generic_conf_2_0_0 xml=279

256 maven_dependencies_1 2 0 xml=256

191 js_forge_0_6_8_1 javascript=104,xm1=87

181 p7_cms_1.5 1 1 xml=181

0 online_voting_logging_1.3.6.1 (none)

0 rabbitmg_spring_webapp_2_0_0 (none)

Totals grouped by language (dominant language first)

javascript: 593941 (45.44%)
java: 427715 (32.73%)
xml: 227204 (17.38%)
ansic: 31923 (2.44%)
python: 19782 (1.51%)
cpp: 4907 (0.38%)
sh: 946 (0.07%)
lisp: 264 (0.02%)
cs: 211 (0.02%)
perl: 99 (0.01%)

Total Physical Source Lines of Code (SLOC)

Development Effort Estimate, Person-Years (Person-Months)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 5.09 (61.07)
(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 73.53

Total Estimated Cost to Develop = $ 50,550,819
(average salary = $56,286/year, overhead = 2.40).

SLOCCount, Copyright (C) 2001-2004 David A. Wheeler

SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL.

SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to

redistribute it under certain conditions as specified by the GNU GPL license;

see the documentation for details.

Please credit this data as "generated using David A. Wheeler's 'SLOCCount'."

1,306,992
374.21 (4,490.53)



